Proving the Conjecture $(-1)^{\omega}=0$

Jonathan Bartlett and Asatur Khurshudyan

January 16, 2021

1 Introduction

The limit

$$
\begin{equation*}
\lim _{\omega \rightarrow \infty}(-1)^{\omega}=0 \text { in }^{*} \mathbb{Z} \tag{1}
\end{equation*}
$$

for the hyperinteger ω is of interest in the analysis of divergent series. Research by the present authors suggested a conjecture that this limit is zero (Bartlett, Gaastra, and Nemati, 2020). Here, we prove that limit.

2 Initial Considerations

Consider ω to be a hyperinteger. We will specify this as $\omega \in{ }^{*} \mathbb{Z}$.

For any integer $k \in \mathbb{Z}$, we have $\sin (\pi k)=0$. By the transfer principle, this also holds for any hyperinteger $\omega \in{ }^{*} \mathbb{Z}$. In other words,

$$
\begin{equation*}
\sin (\pi \omega)=0 \quad \forall \omega \in^{*} \mathbb{Z} \tag{2}
\end{equation*}
$$

By Euler's formula, we can determine that

$$
\begin{equation*}
e^{i \pi \omega}=\cos (\pi \omega)+i \sin (\pi \omega) \tag{3}
\end{equation*}
$$

Using (2), (3) reduces to

$$
\begin{equation*}
e^{i \pi \omega}=\cos (\pi \omega) \quad \text { in }^{*} \mathbb{Z} \tag{4}
\end{equation*}
$$

3 Series Analysis

Consider the series

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k)!} x^{2 k}
$$

which converges to $\cos x$. This means that for any $N \in \mathbb{Z}$, for the partial sum

$$
S_{N}(x)=\sum_{k=0}^{N} \frac{(-1)^{k}}{(2 k)!} x^{2 k}
$$

it holds that

$$
\lim _{N \rightarrow \infty} S_{N}(x)=\cos x \text { in } \mathbb{Z}
$$

Therefore, by the transfer principle, for the partial sum

$$
S_{\Omega}(x)=\sum_{k=0}^{\Omega} \frac{(-1)^{k}}{(2 k)!} x^{2 k}
$$

we have

$$
\begin{equation*}
\lim _{\Omega \rightarrow \infty} S_{\Omega}(x)=\cos x \text { in }{ }^{*} \mathbb{Z} \tag{5}
\end{equation*}
$$

Evaluating S_{Ω}, we get

$$
\begin{equation*}
S_{\Omega}(x)=\cos x+(-1)^{\Omega} f(\Omega, x) \quad \forall \Omega \in^{*} \mathbb{Z} \tag{6}
\end{equation*}
$$

where
$f(\Omega, x)=\frac{x^{2 \Omega+2}}{\Gamma(3+2 \Omega)}{ }_{p} F_{q}\left(\{1\},\left\{\frac{3}{2}+\Omega, 2+\Omega\right\},-\frac{x^{2}}{4}\right)$,
in which Γ is the Euler Γ function, and ${ }_{p} F_{q}$ is the generalized hypergeometric function.
Consider now S_{Ω} when $x=\pi \omega$ for $\omega \in{ }^{*} \mathbb{Z}$. Since the limit (5) exists and is finite for any x, then passing to the limit in (6) as $\Omega \rightarrow \infty$, we get

$$
\cos (\pi \omega)+\lim _{\Omega \rightarrow \infty}(-1)^{\Omega} f(\Omega, \pi \omega)=\cos (\pi \omega) \quad \forall \omega \in \in^{*} \mathbb{Z}
$$

implying that

$$
\begin{equation*}
\lim _{\Omega \rightarrow \infty}(-1)^{\Omega} f(\Omega, \pi \omega)=0 \quad \forall \omega \in \in^{*} \mathbb{Z} \tag{7}
\end{equation*}
$$

However, when ω increases in ${ }^{*} \mathbb{Z}, f$ diverges to infinity, leading (7) to hold for all $\omega \in{ }^{*} \mathbb{Z}$ if and only if

$$
\lim _{\Omega \rightarrow \infty}(-1)^{\Omega}=0 \text { in } * \mathbb{Z}
$$

Thus, the conjecture (1) holds true.

References

Bartlett, J, L Gaastra, and D Nemati (2020). "Hyperreal Numbers for Infinite Divergent Series". In: Communications of the Blyth Institute 2.1, pp. 715. DOI: 10. 33014 / issn . 2640-5652.2.1. bartlett-et-al. 1.

