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Riemann’s rearrangement theorem has long been used to demonstrate that
conditionally convergent series do not establish a single, coherent value. The
theorem states that by simply regrouping the members of a conditionally diver-
gent series, that a person can make that series converge to essentially any real
number, or to diverge. Here, we will show that the problems usually associated
with the rearrangement theorem disappear when using hyperreal numbers.

1 Divergent Series Summation with Hyperreal
Numbers

[1] showed that divergent series can be given definitive, distinct values by using
hyperreal numbers. Hyperreal numbers are numbers which include both infini-
ties and infinitesimals, and in which infinities and infinitesimals behave largely
the same as real numbers. The hyperreal transfer principle states that every
first-order statement about the reals also applies to the hyperreals.

When dealing with hyperreal numbers, since infinities and infinitesimals can-
not be presented as a real number, a symbol is often chosen for a “landmark”
infinity. We choose 𝜔 for this purpose. In hyperreal numbers, infinities are
very distinct from each other. 𝜔 is distinct from 𝜔 + 1, which is distinct from
3𝜔2 − 2𝜔. However, a hyperreal value can be simplified by finding the principal
part—the term with the highest power of 𝜔.

In the system used here, referred to as the BGN method, rather than an
infinite sum going to an arbitrary infinity, it instead goes to a specific hyperreal
value for infinity. The identity

𝜔∑
1

1 = 𝜔 (1)

is used as the reference point for other summations.
Because of the transfer principle, ordinary summation rules can be applied.

For instance, the sum of the series (1 + 2 + 3 + . . .) can be represented as
𝜔∑
𝑘=1

𝑘. (2)
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Using the standard summation formula for arithmetic series, this gives the series
a value of

𝜔∑
𝑘=1

𝑘 =
𝜔2

2
+ 𝜔

2
. (3)

The principal part of this is 𝜔2

2 . This same rule works for convergent series.
Using the standard summation rule for geometric series we can see that

𝜔∑
𝑘=1

1 ·
(
1
2
)
) 𝑘

= 2 − 21−𝜔 . (4)

Here, the principle part is 2, which is the same as what is indicated by the
convergent series.

Using hyperreals with the BGN method unifies the theory behind convergent,
divergent, and, as we will see in the present article, conditionally convergent
series.

2 The Riemann Rearrangement Theorem
A conditionally convergent series is one whose sum converges, but the some of
the absolute values of the series diverges. For instance, Grandi’s series, which
is (1 − 1 + 1 − 1 + 1 − 1 + . . .), is conditionally convergent. The series converges
to 1

2 , but the taking the absolute value of each member of the series causes it
to be divergent.

The Riemann rearrangement theorem states that such series can be rear-
ranged to converge to any real value. Normally, we consider the rearrangements
of members of a series to be a non-operation, but the Riemann rearrangement
theorem shows that, for infinite series, this is not necessarily the case.

As an example, Grandi’s series can be rearranged and regrouped to be

(1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + . . .) = (1 + 0 + 0 + 0 + . . .) = 1. (5)

This is different from its conditionally convergent sum of 1
2 . Also, by regrouping,

it can be made to be zero.

((1 − 1) + (1 − 1) + (1 − 1) + . . .) = (0 + 0 + 0 + . . .) = 0 (6)

According to the Riemann Rearrangement Theorem, because subsets of this
series can be continually rearranged and regrouped, we can make this converge
to any value we desire.

3 The Hyperreal Answer to the Rearrangement
Theorem

Ultimately, the reason the rearrangement works is because infinity (∞), as is
usually expressed when not using hyperreal values, is extremely ambiguous.

2



When making rearrangements, one is essentially changing the number of values
in the series. For instance, with Grandi’s series, if it is rewritten according to
the standard form given in (1), becomes

𝜔∑
𝑘=1

(−1)𝑘−1. (7)

The rearrangement given in (6) does two problematic things:

1. It changes the number of elements in the summation (from 𝜔 to 𝜔
2 ).

2. It assumes that there are an even number of values in the series, so that
each 1 has a corresponding −1.

In fact, an inspection of (5) and (6) shows that each rearrangement is actually
positing a different number of total members of the series, since (5) is assuming
an odd number of values while (6) is assuming an even number of values.

In other words, rearrangements and regroupings change the values of such
series, not because they intrinsically do so, but because the rearranger is playing
off of the ambiguity of ∞ in the real numbers, and changing the number of
members of the series to suit their needs. When a fixed, unambiguous infinity is
attached (such as done here with 𝜔), then the rearrangement games no longer
work.

The Riemann Rearrangement Theorem relies on conditionally convergent
series—series that alternate between positive and negative numbers. Without
having a fixed infinite value, manipulators can alter the series by pulling as
many positive or negative values out of the hat as they wish, thus causing the
series to converge on whatever value they wish. This problem doesn’t occur with
convergent series because any values from the “infinite” portion of the series is
infinitely small, and re-adding finite portions to the beginning of the series,
while it will effect the exact value of the series, will not affect the principal part
of the series.

However, when using hyperreal numbers, infinities are no longer ambiguous.
Therefore, a series of length 𝜔 and 𝜔 − 1 or 𝜔

2 have fundamentally different
lengths, and cannot be treated as if they were the same series. Using hyperreal
numbers, the Riemann Rearrangement Theorem becomes invalid, and conver-
gent, divergent, and conditionally convergent series all exist within a single,
unified understanding of series.
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