
5 k Using Turing Oracles in
Cognitive Models of

Problem-Solving

Jonathan Bartlett

The Blyth Institute

Abstract

At the core of engineering is human problem-solving. Creating a cognitive model of
the task of problem-solving is helpful for planning and organizing engineering tasks.
One possibility rarely considered in modeling cognitive processes is the use of Turing
Oracles. Copeland (1998) put forth the possibility that the mind could be viewed
as an oracle machine, but he never applied that idea practically. Oracles enable the
modeling of processes in the mind which are not computationally based. Using oracles
resolves many of the surprising results of computational problem-solving which arise
as a result of the Tractable Cognition Thesis and similar mechanistic models of the
mind. However, as research into the use of Turing Oracles in problem-solving is new,
there are many methodological issues.

1 Broad Views of Cognition and Their Historic
Consequences in Cognitive Modeling

In the philosophy of mind, three main overarching theories exist concerning how the
mind works—physicalism, dualism, and emergentism. These are ways of understand-
ing cognitive processes in their broadest view. Physicalism is the idea that there is
nothing going on in the mind that is not describable through standard physical pro-
cesses. There may yet be physical processes not currently understood or even known,
but, in the long run, there should not be anything involved in causal processes that
is not physical and understandable through physics. Some physicalists allow for the

99



100 Using Turing Oracles in Cognitive Models of Problem-Solving

non-reduction of mental states to physical states, or at least an epistemological re-
duction, but they are all clear in the closed causality of the physical (Horgan, 1994).

Dualism is the primary contender for this area. Dualism is the idea that the
mind and the body are not equivalent—that there exists at least some part of human
cognition that is beyond what is describable by physics or using physical entities. It
holds that a reduction of the mind to brain physics does not capture the entirety of
what the mind is doing. It also says that there is a causal element being left out—that
the mind, while not itself entirely physical, participates in the causal chain of human
action. In other words, it is not a purely passive element but has a causal role (Heart,
1994).

A third theory is emergentism. Emergentism tries to split the line between
physicalism and dualism. However, it is a very fluid term and is di�cult to distinctly
identify. Some forms of emergentism (especially “weak emergence” or “epistemo-
logical emergence”) are essentially physicalism, while others (for instance, “strong
emergence” or “ontological emergence”) propose outside laws of emergence which
transform the character of initial properties in certain configurations (O’Connor &
Wong, 2012). Therefore, strong emergence tends to be essentially a form of dualism
except that the dualistic properties are captured in a set of laws of emergence. The
question then is whether these laws themselves can be considered material. Since the
question posed in this study concerns whether or not physical causation is su�cient
for an explanation, most views of emergence can be classified as either physicalist or
dualist.

Historically, aspects of cognition that were considered to be part of the non-
physical mind were left unmodeled by dualists. By contrast, the goal of physicalism
is to force all phenomena into explicitly physical models, a process not easily accom-
plished.

To begin with, defining physicalism and dualism are not easy tasks. For a
dualist to say that there is more than one mode of causation, at least one of those
modes needs to be clearly and explicitly described. Similarly, if a physicalist says that
all causes are physical, such a statement is meaningless without a solid definition of
what counts as physical and what does not (Stoljar, 2009).

Several insu�cient definitions of physicalism are often suggested. For example,
one definition is that physicalism deals only with material causes. However, no clear
explanation is given as to what counts as a material cause. Another definition is that
physicalism deals only with observable phenomena. This could have two meanings,
both of which are problematic. If it means that it deals only with things which
can be observed directly, then this would remove most of modern physics from the
physical—direct observation is not possible for atoms, molecules, forces, and the
like. If, on the other hand, the definition includes indirect observations, then there
is no reason to suppose that only physical entities are observable. It is precisely
the contention of the dualists that there are non-physical modes of causation which
have real e↵ects in the world. If dualism is true, then non-physical causes should
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be indirectly observable. Therefore, observability can’t be a distinguishing factor.
A third definition is that physical things are testable. However, this fails for the
same reason that the observable definition fails. Testing simply means looking at
observations, and determining whether or not they match the expectations of the
theory. Therefore, any observable phenomena should be testable in the same way.

One distinguishing factor proposed by physicalists to distinguish between phys-
ical and non-physical behavior is computability. With computability, physical pro-
cesses are those whose results can (at least in theory) be calculated by computational
systems, while non-physical processes are those which cannot. This has been pro-
posed by Iris van Rooij in his Tractable Cognition Thesis as well as Stephen Wolfram
in his Principle of Computational Equivalence (van Rooij, 2008; Wolfram, 2002). By
using this well-defined theory of computability and incomputability, developed in the
early 20th century by Gödel, Church, Turing, and others, it becomes at least pos-
sible to make meaningful statements about physical and non-physical processes. In
addition, because of the groundwork laid by the same pioneers of computability and
incomputability, further advances can be made beyond previous dualist conceptions
of the mind which actually include non-physical elements in models of cognition.

2 A Primer on Computability and Incomputabil-
ity

Incomputability generally refers to the question of whether or not a given function
can be computed given a set of operators. So, for instance, given only the addition,
subtraction, and summation operators, division cannot be computed. However, given
those same operators, a multiplication function can be computed.

One place where incomputability reigns is on self-referential questions. There
are numerous questions that can be asked about a set of mathematical operators
which cannot be answered solely by the functions of the operators themselves. For
example, let’s say you have a set of operators (O) and a list (L) of all of the valid
functions that take a single value as a parameter, yield a single value as a result,
are of finite length, and can be defined using the operators in O, listed in alphabetic
order. This is a countable infinity because each function in L can be identified by
an ordinal number, which is its index into the list. Now, because all of L are valid
functions, there exists a function F (x) which takes the function from L at index x
and yields the value of that function with x as the parameter. The question is, is
F (x) in L?

The answer, perhaps surprisingly, is no. This means that defining F (x) will
require operators not in O. Another example will help demonstrate why. Take another
function, G(x), which returns F (x) + 1. If F (x) is in L, then, G(x) is also in L
(assuming that the addition operator is in O). If G(x) is at index n of L and has a
result r when computed using its own index (which is defined as n), by definition,
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since n is the index of G, then F (n) must return the same result as G(n), which we
have defined to be r. However, the definition of G(x) says that it must be F (x) + 1!
Since F (n) returns r and G(n) returns r, this leads to a contradiction, because r
cannot be equal to r+1. Therefore, F (x) cannot be computed using the operators in
O. This proof is quite independent of what operators exist in O, provided they are
singly valued and include the addition operator. Thus, F (x) is a true function of x
but is incomputable with fixed-length programs of operators in O.

Using the example given above, it seems that computability questions are
based on the set of operators being used to define it. This is largely true. So, if
computability is operator-dependent, how can it help answer questions about the
physicality of the process? The Church-Turing thesis provides a solution, stating
that all finitary mathematical systems are computationally equivalent to some Turing
machine (Turing, 1937, 1939).1

Figure 5.1: An example of a working Turing machine, con-
structed by Mike Davey—Copyright ©2012 Rocky Acosta
and licensed for reuse under the Created Commons Attribu-
tion License

1Turing machines are important because their functions can be explicitly described and their
operations can be concretely implemented in the real world using machines, and as such they are both
verifiable and unambiguous. A Turing machine consists of four parts—an (theoretically) infinitely
long tape (i.e., memory), a read/write head for the tape, a state register, and a fixed state transition
table. The only unimplementable feature of Turing machines is the requirement for an infinitely
long tape. However, in the absence of an infinite tape, it can at least be detected when a given
process requires more tape than actually available. One of the purposes of Turing machines was to
make explicit what was meant by the terms “algorithm,” “e↵ectively calculable,” and “mechanical
procedure.” In other words, the original purpose of developing Turing machines was to delineate
between what was calculable and what was not.



A Primer on Computability and Incomputability 103

The Church-Turing thesis was discovered when several finitary logic systems
were developed independently, including Church’s lambda calculus (Church, 1936;
Turing, 1937). It is hard to imagine two systems so di↵erent in approach as Church’s
lambda calculus and the Turing machine. Yet, in the end, it was proven that they
have the exact same computational abilities. To be technically correct, especially
with Turing machines, it is their maximum abilities which are equivalent. A Turing
machine can be defined with equivalent or less computational power than the lambda
calculus, but not with more. Thus, the computational power of finitary systems do
imply a fixed set of operators.

Such finitary systems which have this maximal computational power are known
as universal machines, or universal computation systems, since they can be pro-
grammed to perform any calculation that is possible on a finitary computation sys-
tem. Thus, any computability question that would be true for one of them would
be true for all of them. Therefore, when used without qualification, incomputability
usually refers to something which is incomputable on a universal computation system.

Wolfram and van Rooij both use universal computation to set a maximal level
of sophistication available in nature. Wolfram explains his Principle of Computational
Equivalence:

One might have assumed that among di↵erent processes there would
be a vast range of di↵erent levels of computational sophistication. But
the remarkable assertion that the Principle of Computational Equiva-
lence makes is that in practice this is not the case, and that instead
there is essentially just one highest level of computational sophistica-
tion, and this is achieved by almost all processes that do not seem
obviously simple . . . For the essence of this phenomenon is that it is
possible to construct universal systems that can perform essentially any
computation—and which must therefore all in a sense be capable of ex-
hibiting the highest level of computational sophistication (Wolfram,
2002, p. 717).

Wolfram is thus stating that within nature, computability is the limiting factor
of what is possible. Van Rooij, while restricting his comments to the nature of the
mind, makes basically the same point:

Human cognitive capacities are constrained by computational tractabil-
ity. This thesis, if true, serves cognitive psychology by constraining the
space of computational-level theories of cognition. (van Rooij, 2008,
p. 939)

In other words, if the brain is constrained by computational tractability, then
it limits the possible set of models which could be used when modeling cognition.
Van Rooij specifically traces this back to the idea that the Church-Turing thesis is
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not merely a limitation of finitary computation, but is a limitation of reality as a
whole, or, as van Rooij puts it, “The Church-Turing Thesis is a hypothesis about the
state of the world” (van Rooij, 2008, p. 943).

Wolfram similarly applies his ideas specifically to the brain, saying:

So what about computations that we perform abstractly with comput-
ers or in our brains? Can these perhaps be more sophisticated? Pre-
sumably they cannot, at least if we want actual results, and not just
generalities. For if a computation is to be carried out explicitly, then it
must ultimately be implemented as a physical process, and must there-
fore be subject to the same limitations as any such process (Wolfram,
2002, p. 721).

Thus, physicalism, when defined su�ciently to distinguish it from anything
else, has been defined by its supporters as being equivalent to computationalism.
This allows a more methodical examination of physicalism and dualism to determine
which is likely to be true.

3 The Halting Problem

One of the classic unsolvable problems in computability is the “halting problem.”
In universal computation systems, there are ways to cause computations to repeat
themselves. However, this leads to a possible problem—if a function is poorly writ-
ten, the function may get caught in a repetitive portion and not be able to leave.
This computation would be a non-halter, and therefore, left to itself, would never
complete. Most familiar computations are halting computations, as demonstrated in
the following computer program. All programming examples are given in JavaScript
for readability.

function double(x) {

var y;

y = x * 2;

return y;

}

Figure 5.2: A function to double a value

This program defines a function called double which obviously doubles its
input. It creates a temporary variable called y to hold the result of the computation
and then returns y as the final value for the function. So, after defining it, the function
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can be used by saying double(4) which would give 8, or double(z) which would take
the value currently denoted by z and return whatever is double of z.

The next example will demonstrate the operation of a loop. This program
computes the factorial of a number which is the result of multiplying a number by
all of the numbers below it down to 1. For instance, factorial(5) is 5 ⇤ 4 ⇤ 3 ⇤ 2 ⇤ 1.
factorial(3) is 3 ⇤ 2 ⇤ 1. So, the number of computations performed, while always
finite for a finite number, varies with the value given. A typical way to program a
factorial function follows:

function factorial(x) {

var val;

var multiplier;

val = 1;

multiplier = x;

while(multiplier > 1) {

val = val * multiplier;

multiplier = multiplier - 1;

}

return val;

}

Figure 5.3: A function to compute the factorial of a number

This function defines two temporary variables—val, which holds the present
state of the computation, and multiplier, which holds the next number that needs to
be multiplied. Unlike algebraic systems, in most computer programming languages,
variables do not have static values but can change over the course of the program.
The = is not an algebraic relationship, but rather it means assignment (e.g., val = 1
means that the value 1 is being assigned to the variable val).

In this program, the value of multiplier is set to the number given. Then
the computation enters the loop. The while command tells the computer that while
the value in the multiplier variable is greater than 1, it should perform the given
computation contained in the curly braces. For example, if the function is performed
with the value of 3, multiplier will be assigned the value 3, which is greater than 1.
Then the computation within the while loop will be performed—it will multiply val
(which starts o↵ at 1) with multiplier (which is currently 3), and then assign that
result back into val. val now has the number 3. multiplier is then decreased by one,
and now has the value 2. The bracket indicates the end of the loop computation, so
the condition is re-evaluated. multiplier’s value of 2 is still greater than one, so we
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perform the loop again. val (which is now 3) is multiplied by multiplier (which is
now 2) and the value (6) is assigned back into val. multiplier is again decreased and
is now 1. Now that the computation is at the end of the loop, the condition will be
evaluated again, and this time multiplier is no longer greater than 1. Because the
condition is no longer true, the loop does not run again, and the computation process
goes on to the next statement.

The next statement returns the value in val as the result of the entire com-
putation. Thus, since val currently holds 6, this function returns 6 as the result of
factorial(3), which is the correct result. Since it does eventually return a value, it
is considered a halting program. It will take longer to return a value if the input
is bigger (since it has to run the loop computation process more times), and it will
return invalid values if the input is less than one (or not an integer), but it will always
return a value. Therefore, since it will always complete in a finite number of steps, it
is a halter.

If the programmer writing this function forgot a step (e.g., to write the instruc-
tion that decreases multiplier), then instead of the previous program, the program
might read as follows:

function factorial(x) {

var val;

var multiplier;

val = 1;

multiplier = x;

while(multiplier > 1) {

val = val * multiplier;

}

return val;

}

Figure 5.4: An incorrect function to compute the factorial of
a number

In this example, sincemultiplier is never decreased, then, for any input greater
than 1, this function will never stop computing! Therefore, in terms of the halting
problem, it doesn’t halt.

Functions on universal computation systems are convertible to numbers. In
fact, that’s how computers work—the computer stores the program as a very large
number. One example of how this can work is that each character in the above
program can be converted to a fixed-size number and then joined together to a large
number to denote the program. And this is, in fact, how some programming languages
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function. Most of the time, however, the conversion of a program into a number
actually works by doing a more intensive conversion of the program into a numeric
language that the computer understands.

Nonetheless, in each case, the program gets converted into a (usually very
large) number. Therefore, since any program can be converted into a counting num-
ber, there are only a countably infinite number of possible programs. But more
importantly, it means that this program, since it is (or can be represented by) a
number, can itself be an input to a function!

Some functions halt on certain inputs, but do not halt on other inputs. The
halting question can only be asked on a combination of both the program and the
input since some inputs may halt, and others may not. Therefore, the halting problem
is a function of two variables—the program p and the input i. Every program/input
combination either will halt, or it will not. There is no in-between state possible on
finitary computations. Therefore, H(p, i) can be denoted as a function which takes
the program p and input i and gives as a result a 1 if p(i) halts, or a 0 if p(i) does
not halt. This is known as a “decision problem”—a problem which takes inputs and
decides if the inputs have a particular feature or match a given pattern. Interestingly,
the program H(p, i) cannot be formed using a universal computation system. This
can be proved similarly to the early proof of incomputability.

To test this, first it must be assumed that H(p, i) is a program that can be
implemented with a universal computation system. If H(p, i) can be implemented,
then it can also be used by a longer program. A program which does this, N(p), is
described below:

function N(p) {

if(H(p, p) == 1) {

while(1 == 1) {

}

}

return 1;

}

Figure 5.5: A theoretical function using the halting function
which demonstrates its impossibility

This function starts by evaluating the halting problem of its input, p, given
itself as the value. If the halting problem of a program p with itself as the input says
“Yes it halts” (i.e., it gives a value of 1), an infinite loop (i.e., a computation which
does not halt) will be performed. If not, the computation should return a value of
1, completing the computation (i.e., the program will halt with that value). One can
ask the question, does N(N) halt? If it does, then this program will loop forever,
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but it can’t, because it has already been determined that it does not halt! Hence,
a contradiction. Likewise the reverse. If N(N) does not halt, then N(N) will halt.
Therefore, H(p, i) cannot be solved using a universal computation system.

This process may seem like an equivocation on the nature of the functions
being described since all of the programs so far have a single input while H(p, i) has
two inputs. However, any number of inputs can be encoded onto a single input using
delimiters. Therefore, specifying multiple inputs is just an easier way to write out the
function than the required steps for encapsulating the inputs together into a single
value.

4 Turing Oracles as Solutions for Incomputable
Problems

Turing recognized that although the value of H(p, i) was not computable, it was in
fact a true function of its variables—that is, for every input set, it yielded a single
output. Thus, the halting problem was a hard problem—it had a solution, but not
one that was determinable through finitary computation. Some important questions
arose from this. Might there be other problems which are harder? Might there be
problems which require the solution to the halting problem to figure out? If so,
how does one go about reasoning about the computational di�culty of an unsolvable
problem? The answer is in Turing Oracles.

A Turing Oracle (hereafter oracle) is a black-box function (i.e., no implementa-
tion description is given) which solves an incomputable function and yields its answer
in a single step. An oracle machine is a combination of a normal computational sys-
tem which also has access to an oracle. If the oracle is well-defined in its abilities,
it can be used to reason about the process even if the process as a whole is incom-
putable. An oracle machine, then, is a regular machine (i.e., a normal computable
function) which is connected to an oracle (i.e., the function has access to an operation
which is incomputable).

Alan Turing describes the oracle machine as follows:

Let us suppose that we are supplied with some unspecified means of
solving number theoretic problems; a kind of oracle as it were. We
will not go any further into the nature of this oracle than to say that
it cannot be a machine. With the help of the oracle we could form a
new kind of machine (call them o-machines), having as one of its fun-
damental processes that of solving a given number theoretic problem.
(Turing, 1939, §4)

Even though the values of functions based on oracle machines cannot be com-
puted (since they are by definition incomputable), it is still possible to reason about
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which problems are reducible to oracles and which oracles they are reducible to. Posed
another way, if a programmer had an oracle for a given problem, what other problems
could be solved? For instance, there is an incomputable function called Rado’s Sigma
Function (a↵ectionately known as the “busy beaver” function). This function says,
given n, what is the longest non-infinite output of any program of size n? This is
an incomputable function, but it can be shown to be computable given an oracle for
H(p, i).

If dualism is true, then at least some aspects of human cognition are not com-
putable. However, given the discussion above, even if human cognition is partially
incomputable, cognition may be at least representable if oracles are included in the
allowable set of operations. Several researchers have previously discussed the possibil-
ity that the human mind may be an oracle machine (i.e., Copeland, 1998). However,
none of them have suggested including oracles as a standard part of cognitive mod-
eling, or how one might apply oracles to cognitive modeling (Bartlett, 2010a,b). The
goal of this paper is to present the concept of modeling cognition via oracle machines
and its application to a model of human problem-solving on insight problems.

5 Partial Solutions to Incomputable Functions Us-
ing Additional Axioms

Incomputable functions are unpredictably sensitive to initial conditions. In other
words, there is no way to computably predict ahead of time the di↵erence in behavior
of the function from the di↵erences in changes to the initial conditions. If this were
possible, they would by definition not be incomputable! However, partial solutions
to these functions can be made by incorporating additional axioms.

An axiom is a truth that is pre-computational. In other words, it is a truth
about computation rather than a result of computation. Chaitin has shown that
additional axioms can be used to make partial solutions of incomputable functions
(Chaitin, 1982). For instance, if God were to say that there are 30 programs less
than size n that halt for a given programming language, then that fact could be used
to determine exactly which of those programs were the ones that halt. This is not a
complete solution, but rather a partial solution. Nonetheless, it is a solution larger
than what was originally determinable without the additional axiom.

Now, most axioms do not come in this form, but instead state that programs
that have a certain pattern of state changes will never halt. This would not generate
an exclusive list, but the list of additional programs that would be known non-halters
through this axiom may be infinitely large. Therefore, by adding axioms, one could
potentially be adding infinite subsets of solutions to incomputable problems. Axiom
addition is also by definition non-algorithmic, for if axioms could be added algorith-
mically, then the halting problem would be solvable. Since this is not the case, axiom
addition is not an algorithmic endeavor.
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Once an axiom is known, however, then the computation of halters and non-
halters for which su�cient axioms are known becomes an algorithmic problem. There-
fore, the discovery of new axioms converts subsets of problems from non-algorithmic
to algorithmic forms.

6 Towards Defining a Turing Oracle for Modeling
Human Problem-Solving on Insight Problems

The next step after investigating computability theory is to relate this theory to prob-
lems in cognitive science—namely problem-solving for insight problems. Cognitive
science usually breaks problem-solving into two broad categories—analysis problems
and insight problems. Analysis problem are problems which can be solved using a
known algorithm or set of known heuristics and are usually characterized by the sub-
ject being aware of how close he is to solving the problem, the benefits of continuous
e↵ort, and the use of pre-existing ideas to solve the problem. Insight problems, on
the other hand, are problems which require a reconceptualization of the process in
order to solve them (Chronicle et al., 2004).

An example of a classic insight problem is the nine-dot problem. In short, the
problem is to take a 3x3 square of dots, and draw four lines that connect every dot
without picking up the pencil. In order to solve the puzzle, the person must realize
that the solution is to extend one of the lines beyond the confines of the box, and
make a “non-dot turn.” This reconceptualization of the problem is rare, the subject
cannot gauge his or her own progress, and continuous e↵ort is usually not as helpful
as taking breaks.

Insight problems like these have significant structural similarity with incom-
putable functions. Incomputable functions can be partially solved through adding
axioms to the mix. Axioms function a bit like reconceptualizations—they allow the
problem to be worked from a di↵erent angle using a di↵erent approach. Because
axioms cannot be generated algorithmically, it is di�cult to conclude how close the
solution is. Likewise, because the person is not following an algorithm (which is im-
possible for generating an axiom), continuous e↵ort along the same path is not likely
to be helpful.

Research on the nine-dot problem has shown that training on certain ideas such
as non-dot turns in similar problems produces an increased success rate in solving the
problem (Kershaw & Ohlsson, 2001; Kershaw, 2004). This e↵ectively mirrors the
way axioms function in mathematical problem-solving—by increasing the number
of axioms available to the subject, experimenters were able to greatly reduce the
di�culty of the nine-dot problem for participants.

Because it is mathematically impossible for a person to take an algorithmic
approach to the general halting problem, it cannot be classed as an analysis problem.
Because of this and its many similarities with other insight problems, the halting
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problem should be classified as an insight problem. As such, the discoveries that are
made for how humans solve the halting problem will help formulate more generally a
theory of human insight.

7 Human Solutions to the Halting Problem

As mentioned previously, if humans are able to solve incomputable functions, then
the physicalism hypothesis is false.2 The halting problem makes a good test case for
this idea because it is one of the most widely studied class of incomputable problems
on both a theoretical and a practical level.

Software development provides the first piece of insight into the process. In
software development, humans have to develop software programs on universal com-
putation systems, and those programs must halt. If they do not, their programs will
be broken. Therefore, they must solve problems on at least some subset of the halting
problem in order to accomplish their tasks. In addition, the problems that they are
given to solve are not of their own design, so it is not a selection bias. It is simply
not true that programmers are only choosing the programs to solve based on their
intrinsic abilities to solve them because someone else (usually someone without the
computational background needed to know the di↵erence) is assigning the programs.
In addition, it is incorrect to assert that programmers are working around their in-
abilities to solve certain types of halting problems, because, while the programmer
might add some extrinsic complexity to a program, the complexity of the problem
itself has an intrinsic minimum complexity regarding a given programming language.
Likewise, simply writing it in another language does not help, because there exists
a finite-sized transformer from any language to any other language, so being able to
solve it in one language is de facto evidence of being able to solve it in another.

One may then conclude from the experience of the process of programming
that significant evidence exists that humans are able to at least solve a similar problem
to the halting problem. However, there are some important caveats.

A minor caveat is that machines in real life do not exhibit true universal com-
putation as defined in the abstract. Universal computation systems have an infinite
memory and can run forever without breaking down. However, there are two primary
reasons why this is relatively unimportant to this discussion. The first is that even
with fixed-size memory, the halting problem is still practically intractable. That is,
the reason why fixed-size memories allow the halting problem to be solved is that
a programmer could do an exhaustive search of machine states to determine if the
machine state contains cycles (i.e., two exactly equivalent machine states) before halt-
ing. If so, then the program will halt. However, calculating the result of the halting

2Penrose and others have suggested that physical processes are non-computational. However,
they do so without a rigorous definition of what counts as “physical.” The goal is to make the defi-
nition of physical rigorous enough to be testable, and therefore have used computational tractability
as the requirement. See section 12 for additional discussion.
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problem even using finite-sized memory would require either enormous amounts of
time or memory, on the order of 2n, where n is the number of bits in memory.3 In
addition, the reasoning usually given by programmers as to why something should
not halt is more similar to a proof than to an exhaustive set of attempts. If humans
are regularly solving the halting problem for a large number of programs, then it is
not because they are being aided by fixed-size computer memories.

The main caveat is that there exist programs (even very short programs) for
which humans have not solved the halting problem. Many open problems in number
theory can be quite simply converted into a halting problem so that the answer to
the problem can be solved by knowing whether or not a given computation will halt.
If humans have immediate access to a halting problem oracle, why do these programs
give such trouble?

As an example, a perfect number is a number which is equal to the sum of
its divisors excluding itself. For instance, 6 is a perfect number because 1, 2, and 3
are all divisors, and they add up to 6. It is not known if there are any odd perfect
numbers. A program could be written to search and find an odd perfect number, and
halt if it finds one. Such a program can be fairly simply expressed as:

function odd_perfect_divisor_exists() {

var i = 3;

while(true) { // This means to loop forever unless terminated

// within the loop

var divisors = all_divisors_of(i);

var divisor_sum = sum(divisors);

if(divisor_sum == i) {

return i; // i.e. Halt

} else {

i = i + 2; // Go to the next odd number

}

}

}

Figure 5.6: A function which returns upon finding an odd
perfect number

Therefore, if the above program halts, then there is an odd perfect number.

3As an example, one could solve the halting problem on fixed-size memories using a counter
(Gurari, 1989). Since the number of possible machine states is 2n, then if machine states are counted,
we could determine that it must be a non-halting program if the program performs more than 2n

computations. A faster way of checking for cycles can be implemented, but it would generally require
2n amount of memory.
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If it does not halt, then there is not one. However, no human currently knows the
answer to this question. Therefore, whatever it is that humans are doing, it is not
directly knowing the answer to the halting problem.

Will humans ever be able to solve this problem? If humans possessed the same
limitations on computation as computers, then they would never be able to solve this
(and many other) problems. However, math and science, as disciplines, assume that
unknown problems with definite answers will eventually be knowable. Simply stated,
the progress of science depends on the ability of humans to eventually solve such
problems as these.

In other words, if this is a fundamental limitation of humans, then the search
for more and more mathematical truths may be madness—they will never be known.
This has led some theorists such as Gregory Chaitin to suppose that theorists should,
in some cases, simply assume the truth or falsity of some claims as axioms, even
in absence of proofs of their truth (Chaitin, 2006). This seems to be a dangerous
road to travel. Chaitin uses the fact that di↵erent geometries can be made from
di↵erent axioms about the nature of the world to justify the arbitrariness of choosing
axioms. In the case of geometry, for instance, the two di↵erent answers to the question
of whether parallel lines can intersect generates two di↵erent geometries. However,
choosing axiomatic truths for geometry is di↵erent than finding axiomatic truths for
solving incomputable problems such as the halting problem, because in the former
the axiom is unconstrained within the system and in the latter it is constrained but
unprovable within the system. If an axiom is unconstrained, then given the remaining
axioms, a fully consistent system can be maintained with either choice of axiom. In
other words, either axiom is equally consistent with the remaining axioms. If an
axiom is constrained but unprovable, then the truthfulness of an axiom is dependent
on the remaining axioms. In other words, one axiom is true and another is false
given the remaining axioms. In the case of reasoning about the halting problem,
programmers are dealing entirely with constrained but unprovable axioms. It might
be a worthwhile endeavor to provisionally accept an axiom and see where it leads,
but it is dangerous to include a provisionally accepted axiom on equal ground with
other types of axioms in formal mathematics.

Another option, however, is that humans are able to incrementally arrive at
solutions to halting problems. This would mean that humans have access to an oracle
which is more powerful than finitary computational systems, but less powerful than
a halting oracle.

8 An Oracle for Insight Problems

Selmer Bringsjord has argued for the mind being hyper-computational on the basis
of his research into human ability to solve the halting problem. His group claims that
they could always determine the halting problem for Turing machines of size n if they
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took into account the determination of the halting problem for Turing machines of
size n� 1 (Bringsjord, Kellet, Shilliday, & Taylor, 2006).

Bringsjord’s group has considerable experience with the halting problem, but
it is impossible to tell if his formulation is completely true based on the size of
the problem space when n goes beyond 4—there are then too many programs for
humans to analyze (when n is 5, there are 63,403,380,965,376 programs). What
he found, though, is that his group could formulate halting proofs for programs of
size n based on previous patterns which were identified for size n � 1. They used
the proofs that they made for size n � 1 as a basis for the proofs in programs of
size n. This is itself an interesting result, though it is hard to say that these are
necessarily based on program size, since there is nothing in the halting problem that
is program-size dependent. A better interpretation is that the proofs were built by
introducing constrained axioms. The larger programs utilized the axioms introduced
in smaller programs, but potentially required more axioms to solve. Therefore, the
proofs utilized the smaller programs because they utilized the axioms demonstrated
there. As the programs became larger, the number of axioms required to determine
a solution also grew.

This explanation actually fits surprisingly well—it is non-algorithmic (it is
determining unprovable axioms), it is incremental (each axiom gives more explanatory
power), and it is weaker than a halting oracle.

To put this more formally, let’s define some values:

A—the minimum set of axioms required to solve Q(p, i)

Q—a decision problem (such as the halting problem)

p—a program

i—the input to program p

B—a set of axioms such that the size of the set of the intersection of A and B is
one smaller than A. In other words, B contains all of the axioms required to
solve Q(p, i) except one.

From these definitions human insight can be described by the following oracle:

A = I(Q, p, i, B) (5.1)

In other words, if a human is given a decision problem over a certain input, and
he or she knows all of the axioms needed to solve the problem except one, then human
insight will reveal the remaining axiom. If true, this would explain why insight is both
incremental and non-computational. It goes beyond what is available to computation,
but still has prerequisites. In this proposal, all axioms are known except one. Thus,
in the case of finding odd perfect numbers, the problem of finding the solution to the
problem is that there are not enough pre-existing axioms to infer the final axiom.
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9 Problems and Directions

The main problem with the description as stated is that there are di↵erent kinds of
axioms, yet there is insu�cient mathematical theory (at least known to the author)
to di↵erentiate types of axioms. At present, a distinction should be made between
bottom-up and top-down axioms. As mentioned earlier, if God would say that there
are x halting programs of size n, a programmer could determine which ones they were
by running all of them simultaneously until x of them halt. This kind of axiom, a
“top-down” axiom, requires prior knowledge of the entire spectrum of the problem
to determine. Another kind of axiom, a “bottom-up” axiom, requires a minimum of
understanding in order to be apprehended. Its truth is knowable even if not provable
within its own formalism, and its application is not intrinsically bounded.

An example of a bottom-up axiom is an axiom which says that if a program
has a loop whose control variable is monotonically decreasing and has a termination
condition which is greater than its start value, then that program will never halt. That
axiom, which is provable by induction, will then allow a programmer to determine
the value of the halting problem for an infinite subset of programs.4 Thus, it acts
as a bottom-up axiom. In addition, as should be obvious, the introduction of such
an axiom converts an infinite subset of problems from insight problems to analysis
problems. Knowing such axioms allows the programmer to proceed algorithmically!

As a result, several open questions emerge:

1. Are there other properties of axioms which are important to the sequence in
which they may be found?

2. Are there other prerequisites for finding these axioms?

3. In what ways (if any) do axioms relate to program size?

4. Is there a proper way to measure the size of an axiom?

Chaitin’s proposal for measuring axioms is related to his ⌦ probability. ⌦ is
the probability for a given Turing machine as to whether or not it will halt, which,
for the sake of his theory, is written out as a string of bits. Chaitin measures axioms
by the number of bits of ⌦ they are able to compute. If an axiom can deduce two bits
of ⌦, then the axiom is two bits long (Chaitin, 2007). A naive approach to using this
definition might say that humans are able to deduce a single bit of ⌦ when needed.
However, these bits are much “smaller” than the types of axioms that humans tend to
develop, which are much wider in extent, as each bit of ⌦ is a single program, rather

4Some may claim that, since it is proved using an inductive proof, this statement becomes a
theorem rather than an axiom. However, it is only a theorem from second-order logic, since general
induction requires second-order logic and can only be imported to first-order logic as an axiom
(Enderton, 2012). Since the machine itself is a first-order logic machine (Turing, 1936), it is an
axiom from the perspective of the first-order system.
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than a collection of programs. There seems to be, based on experience, some intrinsic
ordering on the discoverability of axioms present within ⌦. An algorithm can discover
1s (halts) within omega, with an implicit ordering based on length of program and
the program’s running time. For instance, a program could be written which started
program 1 at time 1, program 2 at time 2, etc. Each iteration would run one cycle of
each current program and start one new program. Each program that halts gives one
bit of omega. Therefore, by exhaustive search, solutions to ⌦ can be discovered one
bit at a time. However, this does not match the way humans arrive at the solution,
which is a more generalized axiomatic approach (covering multiple cases of programs
at a time—not just a single instance like ⌦). Likewise, such algorithms can never
discover the 0s (non-halters). Therefore, although ⌦ is a powerful conceptualization
of the solution to the halting problem, it is unlikely to be helpful in the types of
axioms that humans appear to be discovering.

Another possible way to measure the size of an axiom is to measure the size of
the recognizer function needed to recognize instances of the axiom. But again, it is
unclear whether or not that would be the measurement which would give the proper
ordering of axiom determination. It may be harder to implement a recognizer than
it is to intuitively recognize an axiom.

Therefore, in order to proceed further, additional research is needed into the
nature of axioms themselves and the di↵erent ways that they can be categorized and
quantified in order to find a natural sizing and ordering for them.

Again, two questions emerge that relate to the embodiment of the oracle itself:

1. How reliable is the axiom-finding oracle?

2. What are individual di↵erences in this oracle?

The answers to such questions will lead to more understanding about how the
oracle interacts with the rest of the mind’s systems.

10 Generalizing the Oracle Method

Although important, the main focus of this paper is not the specific oracle outlined
above. The larger point is that if an operation in the mind is non-physical, this does
not preclude it from being modeled. Specifically, oracles seem to work for modeling a
wide variety of non-physical operations. There are probably other operations which
will require other formalisms, but formalisms should not be avoided simply because
the formalism is not physically computable.

So how does one make a general application of oracles to modeling the mind?
First of all, it is important that the operation under consideration be well-defined
in terms of what it is doing. It is not worthwhile to simply state “something occurs
here”—such is not a well-specified description. In the example above, specific precon-
ditions (a decision problem, a program, its input, and a set of existing axioms) and a
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specific postcondition (the needed axiom to solve the problem) have been postulated.
William Dembski’s concept of specification could be used to determine whether or
not the given specification is too broad or if it is reasonably constraining. Dembski’s
measurement is basically a relationship of the potentially described target states to
the specification length. If a specification does not su�ciently limit the target space
of possibilities, it is not a useful specification (Dembski, 2005).

Second, specific reasons must exist in order to believe that the proposed process
is incomputable. Since solving the halting problem is known to be incomputable and
adding axioms is incomputable by definition (otherwise they would be theorems),
then specific evidence indicates that the proposed process is incomputable.

The hard part then comes in testing the theory. Because the results are in-
computable, and not even likely reducible to a probability distribution, testing it is
more di�cult. In the case of computable causes, a specific end-point prediction can
be established by computation, and then the result can be validated against that
computation. In this case, the result is not computable, and therefore validation is
more di�cult. Validation will often be based on the qualitative description of the
process rather than a quantitative prediction. Parts of it may still be quantifiable,
but only with di�culty. For instance, to test the example presented, a method of
identifying and counting the number of axioms within a person’s mind is needed in
order to come up with a quantifiable prediction. However, since this is not possible, it
can only be tested based on secondary quantifications. Thus, testability on proposed
oracles becomes much more dialectic.

11 Applications

This method of using oracles for modeling human cognition has many applications
to both psychology and engineering, as well as to the history of technology. For
psychology, it introduces a new way of evaluating mental causes and a new formal-
ism for modeling and testing them. In several known cases, human problem solving
outperforms what is expected from computationalism. For example, one group of re-
searchers reported that human performance on the Traveling Salesman Problem scales
linearly with the number of nodes, which far surpasses any computational estimator
for the problem (Dry, Lee, Vickers, & Hughes, 2006). Therefore, modeling human
performance in terms of an oracle machine may allow more accurate predictions of
performance.

For engineering, oracles can be used to better identify and measure complexity.
If axioms become quantifiable, and the number of axioms required to solve problems
becomes quantifiable, then this can transform the practice of complexity estimation.
One such method to use these ideas to calculate software complexity is given in
Bartlett (2014).

This idea can also be applied to software computer games. Many computer
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games are organized by “levels” so that each level is harder than the previous one.
One could use axioms as a measure of hardness and construct the levels so that each
one introduces a new axiom used to complete the game. This would allow a more
rigorous approach to game level design at least in certain types of computer games.

A final way of using this idea is in understanding the history of technology,
including science and mathematics. It has been a curious feature that many “leaps”
in scientific or mathematical thought have been made simultaneously by multiple
people. Isaac Newton and Gottfried Leibniz both independently invented calculus,
Gregory Chaitin and Andrey Kolmogorov both independently invented algorithmic
information theory, Elisha Gray and Alexander Graham Bell both filed a patent for
the telephone on the same day, and the list goes on and on (Aboites, Boltyanskii, &
Wilson, 2012).5 This model, if correct, would validate the view of T. D. Stokes that
“even though there is no algorithm of discovery, there are logical elements present
in the process whereby a novel hypothesis is devised.” (Stokes, 1986, p. 111). This
model presents a non-algorithmic process and shows the logical elements which are
within its prerequisites. Therefore, when ideas are widespread, multiple people will
each be a single axiom away from discovery. Consequently, faced with the same
problem, many di↵erent people will be able to realize the same missing axiom.

12 Final Considerations

There is good evidence human cognition goes beyond what has been traditionally
considered as “physical,” and a lack of physicality does not preclude cognitive mod-
eling. “Physical” has been defined as “computable” in order to avoid the ambiguities
of the term. This is important because someone might try to assert that humans have
a separate soul and that it is simply physical. Without a solid definition of what is
and is not physical, nothing prevents such a formulation.

Roger Penrose and Jack Copeland have both made a similar suggestion
(Copeland, 1998; Hodges, 2000). Both have agreed that humans seem to be ora-
cle machines, but in a purely physical sense. However, neither of them provided a
su�cient definition of what counted as physical or non-physical to make a proper
distinction. Nothing that either of them has said would contradict what is defended
in this paper, though Penrose argues that there is even more to human consciousness
than is representable through oracle machines—a position also not in contradiction
to the claims defended here. For instance, it is hard to consider the act of true un-
derstanding as a process involving numbers at all, as John Searle’s Chinese Room
argument shows (Searle, 1980).

Another possible objection, then, is to say that the universe as a whole isn’t
physical. It could be possible, for instance, that even the fundamental laws of matter
are only fully describable using oracles, and none of them at all are computable with

5Appendix A of Aboites et al. (2012) contains quite an impressive list of codiscoveries.
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finitary methods, and therefore finitary methods can only be used to solve certain
macro-systems which are the exception rather than the rule. However, even if true,
that would not lead to the conclusion that physicalism is true and incomputable
functions should be classified as physical along with computable ones. Instead it
would reveal that the idealists such as Richard Conn Henry (2005), who believe that
the physical is a mere epiphenomenon and the non-physical is what is really real, were
the ones who were right all along. Douglas Robertson (1999) comments:

The possibility that phenomena exist that cannot be modeled with
mathematics may throw an interesting light on Weinberg’s famous com-
ment: “The more the universe seems comprehensible, the more it seems
pointless.” It might turn out that only that portion of the universe that
happens to be comprehensible is also pointless.

In any case, while it is certainly an improbable proposition, it is a logical possibility
that physicalism is not true even for physics!

While the present discussion focuses on models of human insight, that limi-
tation is purely practical—there is no known way of detecting or measuring insight
behavior on non-human creatures—and there is no philosophical, theoretical, or theo-
logical reason why such processes could not be occurring in other creatures at a much
lower level. Nothing in this proposal limits itself either to modeling humans or even
organisms. However, in humans it seems most obvious and evident that restricting
reality to only computable functions is incorrect.



120 Using Turing Oracles in Cognitive Models of Problem-Solving

References

Aboites, V., Boltyanskii, V. G., & Wilson, M. (2012). A model for co-discovery in
science based on the synchronization of gauss maps. International Journal of
Pure and Applied Mathematics, 79(2), 357–373. Available from http://ijpam.
eu/contents/2012-79-2/15/15.pdf

Bartlett, J. (2010a). A critique of nonreductive physicalism. Phillips Theological
Seminary, Tulsa, OK. Unpublished Master’s Integrative Paper.

Bartlett, J. (2010b). Developing an approach to non-physical cognitive causation in
a creation perspective. Occasional Papers of the BSG, 17, 3.

Bartlett, J. (2014). Calculating software complexity using the halting problem. In J.
Bartlett, D. Halsmer, & M. R. Hall (Eds.), Engineering and the ultimate (pp.
123–130). Broken Arrow, OK: Blyth Institute Press.

Bringsjord, S., Kellett, O., Shilliday, A., Taylor, J., van Heuveln, B., Yang, Y.,
Baumes, J., & Ross, K. (2006). A new Gödelian argument for hypercom-
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