
Volume 2, Issue 2

Evolution in the Valley of Illusions 41

there is no scaling constant at the beginning—the scaling
constant is simply one.

Therefore, active information fulfills the requirements for a
canonical specified complexity model.

Generalized information (GI) measures the amount of gen-
eralization that a model achieves for a dataset. GI allows
for judging machine learning models in the face of model
errors by using active information as a discounting mecha-
nism (Bartlett and Holloway, 2019). The simplified form of
GI is simply the difference between the active information
and the program length in bits (!).

"! = "+ − !. (3)

We can rewrite this as follows:

"! = − log2

(
#($)
%($)

)
− log2 (2"), (4)

= − log2

(
#($)
%($)

)
− log2 (2"), (5)

= − log2

(
2" #($)
%($)

)
. (6)

As you can see, 2" serves as the scaling constant &. As
mentioned before,

∫
#

d%($) = 1. Since any program will
have a length ! ≥ 0, this means that 2" ≥ 1. This means
that GI also serves as a specified complexity model.

Bartlett, J and E Holloway (2019). “Generalized Informa-
tion: A Straightforward Method for Judging Machine
Learning Models”. In: Communications of the Blyth In-
stitute 1.2, pp. 13–21. doi: 10 . 33014 / issn . 2640 -
5652.1.2.bartlett.1.

Dembski, W A and R J Marks II (2009). “Conservation of
Information in Search: Measuring the Cost of Success”.
In: IEEE Transactions on Systems, Man and Cyber-
netics A, Systems & Humans 5.5, pp. 1051–1061. doi:
10.1109/TSMCA.2009.2025027.

Montañez, G D (2018). “A Unified Model of Complex Spec-
ified Information”. In: BIO-Complexity 2018 (4), pp. 1–
26. doi: 10.5048/BIO-C.2018.4.

Evolution in the Valley of Illusions

Eric Holloway
DOI: 10.33014/issn.2640-5652.2.2.holloway.3

Evolutionary algorithms are inspired by the biological the-
ory of evolution. These kinds of algorithms are called opti-
mization algorithms. They are meant to find ’good enough’
solutions to problems by searching through a combination
of possible solutions and evaluating each solution by some
objective function.

The two tenets of evolutionary theory is that change to
the genome are performed without information about what
makes a fit organism. The adjustment for fitness is made by
the environment selecting organisms that manage to survive
and reproduce. This simple procedure is assumed to be re-
sponsible for the extraordinarily complex biological organ-
isms we see all around us (including ourselves) that greatly
exceed anything humans can engineer. In fact, many cut-
ting edge human inventions, such a sonar, electricity and
motors have already been invented many millions of years
ago by evolution. Additionally, when consideration of time
and oportunities to evolve have been taken into account,
the equivalent computation is not too far out of reach of
our modern super computers. Thus, it would seem that we
almost automatically create phenomenal inventions auto-
matically just by copying the simple evolutionary process.

With Mendel’s discovery of genes, this simplified the sit-
uation even more. Instead of having to deal with messy
analogue systems, evolution was reduced to variations on
discrete modules. These modules were simplified even more
through the discovery of DNA, and the institution of the
fundamental dogma, which is that information only flows
from the DNA sequence to the organism. The organism is
said to have no ability to reverse the flow of information to
modify its DNA in anticipation of environmental changes.
This is a restatement of Darwin’s notion that variation is
random in that it occurs without any foresight.

We now know the fundamental dogma is not quite airtight,
and is in fact fairly leaky. The discovery of horizontal gene
transfer shows that the DNA can be edited directly in a
variety of different ways. So, there are potential ways for
the flow of information to be reversed back into the genome.
For example, at the RNA level, viruses frequently modify
their own genetic code, and this mechanism allows them to
adapt to new species through a process known as zoonosis.

https://doi.org/10.33014/issn.2640-5652.1.2.bartlett.1
https://doi.org/10.33014/issn.2640-5652.1.2.bartlett.1
https://doi.org/10.1109/TSMCA.2009.2025027
https://doi.org/10.5048/BIO-C.2018.4
https://dx.doi.org/10.33014/issn.2640-5652.2.2.holloway.3

42 Letters and Notes

A Simple Evolutionary Algorithm

But, let’s return back to evolutionary algorithms. These al-
gorithms are based on the original Darwinistic formulation
that mutation occurs randomly. The potential solutions
are usually represented as binary strings, but sometimes
the encoding is much more sophisticated. The algorithm
usually use some mechanism that is considered to be evo-
lutionary, such as randomly mutating bits in the binary
string, combining multiple strings with crossover, or even
some variants of horizontal gene transfer. Then, once a new
set of candidate solutions are created, their ‘fitness’ is mea-
sured with the objective function, and then a subset of the
solutions are selected based on fitness for the next round.

As an example, Figure 1 shows a very simple evolutionary
algorithm written in Python, used to solve a bin packing
problem. This particular problem has useful applications.
For instance, if you want to optimize what TODO tasks
to do, where each task has a time cost and a value associ-
ated, and there is a limited amount of time to do the tasks.
We can also imagine the evolutionary utility of solving this
problem. When being chased by a predator, an animal
needs to correctly rank its various actions appropriately to
maximize survival probability. If the animal decides to per-
form an elaborate mating dance while being chased, it is a
goner. So, this simple problem actually turns out to be key
for the reproductive survival that drives evolution.

Building Block Hypothesis

John Holland, the inventor of the “genetic algorithm,” came
up with a theory as to why these algorithms work. He
thought that good solutions could be built up from worse
solutions through the composition of “building blocks.” The
thought was that the reliance on building blocks reduced
the search space and thus allowed the algorithm to find
good solutions more quickly. However, as the no free lunch
theorem proves, while this hypothesis is valid for some sce-
narios, it is not valid in general, and building blocks in fact
can bias an algorithm towards bad solutions.

Deceptive Landscapes

This problem of bias towards bad solutions is known as the
“deceptive landscape.” In this scenario, the evolutionary al-
gorithm is lead along a “road” of incrementally better and
better solutions by minor modifications to previous solu-
tions. However, eventually the road leads to a cliff, where
any modification to the solution drastically lowers the so-

lution fitness, resulting in a halt to any further searching.

This is related to the problem of local optima, where if we
envision the search landscape as a real, physical landscape,
with hills and valleys, the search process can be a ball we
are trying to roll to the lowest part on the landscape, but
it can get stuck in dips that are still fairly high up on the
hills. The usual approach to solve this problem is to jostle
the ball a bit to get it out of the dip. The deceptive road
is a variant where the ball falls into a really deep pit such
that no amount of jostling can get it out, and the pit is still
really high up on the hill.

Here is one example of a deceptive landscape that we can
plug into our evolutionary algorithm. 99 options receive a
reward of 1, but the last option gets a reward of 10,000,000.
The last option is the only option needed, but we will see
evolution drives the solution to ignore the enormous reward
in favor of a more piddly reward. You can see the result in
Figure 2.
durations = [1] * 99 + [timeframe]
values = [1] * 99 + [10000000]

This landscape makes it almost impossible for the evolu-
tionary algorithm to find the optimal solution since the
structure of the landscape biases the algorithm to add more
elements to the collection when what it should be doing is
removing all elements except the element with the highest
score.

What Does This Mean?

In arguments for evolution, it is often assumed that as long
as some genetic code generates a functional organ impor-
tant for survival, the environment will select towards that
code, and with enough opportunities the organism’s genome
will make all the necessary random baby steps to get to the
target. Richard Dawkins makes this argument in The Blind
Watchmaker.

On the other hand, this article shows that “survival bene-
fit = generated by evolution” is not a forgone conclusion.
One might think that since animals evolved then what we
observe is merely the successful paths. But, this makes
the fallacy of affirming the consequent, that because A im-
plies B, then observing B implies A. We can only draw this
conclusion if evolution is the only possible explanation; es-
sentially a tautalogy. However, if we start off with the a
priori assumption that evolution is the only possible expla-
nation, then we have crossed over from the realm of science
to dogmatism.

Volume 2, Issue 2

Evolution in the Valley of Illusions 43

Figure 1: Python Evolutionary Algorithm

from random import randint

cnt = 100
durations = [randint (1, 10) for _ in range (cnt)]
values = [randint (1, 10) for _ in range (cnt)]

timeframe = 400
def fitness (solution):

total_duration = 0
for i, d in zip(solution , durations):

if i == 1:
total_duration += d

if total_duration > timeframe : return -1
total_value = 0
for i, v in zip(solution , values):

if i == 1:
total_value += v

return total_value

def mutate (individual):
pos = randint (0, len(individual)-1)
new_ind = [v for v in individual]
new_ind [pos] = randint (0, 1)
return new_ind

genome = [randint (0, 1) for _ in range (cnt)]

print (’start fitness : ’ + str(fitness (genome)))

iterations = 300
for _ in range (iterations):

new_genome = mutate (genome)
if fitness (new_genome) > fitness (genome):

genome = new_genome

print (’ending fitness : ’ + str(fitness (genome)))

44 Letters and Notes

Figure 2: A Deceitful Landscape

0 200 400 600 800 1000

0
2
0

4
0

6
0

8
0

1
0
0

Iteration

F
itn

e
ss

0 200 400 600 800 1000

0
2
0

4
0

6
0

8
0

1
0
0

Iteration

F
itn

e
ss

S
im

ila
ri

ty

0
2
0

4
0

6
0

8
0

1
0
0

genome fitness
similarity to optimal

Is Active Information Applicable to
Biology?
Jonathan Bartlett
DOI: 10.33014/issn.2640-5652.2.2.bartlett.2

Active information was originally introduced in 2009 by
William Dembski and Robert Marks II (Dembski and
Marks II, 2009). Active information identifies how much in-
formation that a search has compared to a “random search.”
Introduced in the context of information science, it was
originally utilized towards identifying information sources
in various computerized forms and simulations of evolution.

The reason why active information works is because there
is no general “best” algorithm for searching. A search that
is good in one context will be terrible in another. There
might be a best search for a particular situation, but not
one that serves all situations equally. In fact, it turns out
that, for any particular search situation, a random search

has average performance characteristics compared to any
other search algorithm.

Therefore, for any search situation, we have the capability
of determining what the average success rate for a search
should be (note that the success rate is how many times
the search algorith has to “look” before finding a successful
hit). If we simply perform a random search and measure
successes, we can determine the average value.

In terms of statistics, this average value is the expected
value for the success rate for a search strategy chosen arbi-
trarily. That is, if the search strategy is chosen arbitrarily,
we would expect that the success rate should be roughly
equivalent to that of a random search.

Active information measures the distance between the suc-
cess rate that we actually observe and the success rate that
we would expect from an arbitrarily chosen search strategy.
If this is measured prior to selection affecting the success
rate, we can then measure the distance between the success
rate that the cell’s own mutational machinery is having and
the success rate that we would expect from arbitrary muta-
tion strategies. This will tell us the amount of information
that the cell’s mutational machinery has for finding a solu-
tion in a given selective process.

Recently, I demonstrated how this could be measured in
biological systems, giving examples for how different types
of systems might be measured (Bartlett, 2020). Since this
is a fairly new approach for thinking about mutations in the
genome, there are many confusions about what is actually
being claimed and proposed. This note intends to clarify,
explain, and defend the notions presented in the paper.

Addressing Misconceptions

I want to start by clarifying that active information does
not (a) hold that mutations form a uniform random dis-
tribution, (b) hold that mutations should form a uniform
random distribution, or (c) hold that standard evolutionary
theory holds that mutations should form a uniform random
distribution. Instead, active information attempts to sim-
ulate a uniform random distribution of mutations in order
to get an expected value for the success rate of other muta-
tional strategies. This follows not from evolutionary theory
but rather from information theory, which states that such
a search will give you the expected value for the success rate
of other searches. This distinction is critical and forms the
basis of the logic of applying active information to biology.

Another important clarification is that, as stated in the pa-
per, it does not matter if evolution is ontologically a search.

https://dx.doi.org/10.33014/issn.2640-5652.2.2.bartlett.2

	About This Journal
	The Purpose of the Journal
	Paper Submission Policies
	Other Journal Content

	From the Editors
	Annie CrawfordAnnie CrawfordMetaphor and Meaning in the Teleological Language of Biology
	Introduction
	The History of Teleology in the Biological Sciences
	Teleological language is Essential to Biology
	If teleological language is essential to biology, then life must be teleological
	Conclusion: Life All the Way Down

	Salvador CordovaSalvador CordovaFisher's Fundamental Theorem of Natural Selection Isn't Fundamental After All
	Introduction: The Problem of Defining Fitness
	Absolute ``Darwinian'' Fitness vs. Relative Fitness
	Mean and Variance of Relative Fitnesses
	Numerical Examples to Illustrate Fisher's Theorem
	Discussion
	Conclusion

	Eric HollowayEric HollowayTutorial: Bioinformatics Basics
	Introduction
	Genetic Code and Sequence Translation
	Sequencing and Assembly
	Accessing Data
	Finding Things With BLAST
	Summary

	Letters and Notes
	Eric HollowayYou Cannot Get Meaning From Randomness
	Jonathan BartlettActive Information is a Specified Complexity Model
	Eric HollowayEvolution in the Valley of Illusions
	Jonathan BartlettIs Active Information Applicable to Biology?
	Eric HollowayEmpirical Active Information

	News

