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Abstract

Generalized Information (GI) is a measurement of the de-
gree to which a program can be said to generalize a dataset.
It is calculated by creating a program to model the data
set, measuring the Active Information in the model, and
subtracting out the size of the model. Active Information
allows GI to be usable with both exact and inexact models.

1 Introduction

In Machine Learning and other forms of statistical infer-
ence, the goal is to create a model that matches the data.
A model is essentially a function which takes a certain num-
ber of inputs and generates an output value. The input is
whatever parameters the statistical model is allowing, and
the output is the prediction, classification, or whatever the
model is meant to identify.

As a simplified example, let’s say that you are a realtor and
you want to know the impact of square footage and the year
a home was built on its selling price. Given a large amount
of data, a machine learning package might find a way to
model that data, so that, if you give it an input which is
not in the set, the system will spit out for you what it thinks
the selling price will be.

2 The Problem of Overfitting

Exact fits of models to data are not necessarily preferable in
machine learning. Such models are often said to be overfit.
Overfitting occurs because not all data is actually signal.

Nearly any dataset will contain some amount of noise. If
your model makes an exact fit to the data, that means
that much of your model is actually modeling the noise.
Modeling the noise actually causes poor performance as the
model is extended out to new data points. For the purposes

of this paper, noise can either be statistically random events
(variations around a mean) or even non-noise features, but
whose predictive inputs are not included in the set of inputs
being modeled.

In the realtor example above, let’s say that most homes in
the 1,000-1,200 square feet area that were built in 1975 were
selling for $150,000, but one house, which was 1,175 square
feet, sold for $75,000, because the homeowner desperately
needed to sell it quickly. If the model attempted to have
an exact model, that particular data point would cause bad
predictions for square footages for that year (and possibly
surrounding years). Thus, overfitting a model means that
both data and noise are included in the model.

The goal, therefore, is to find a way to tell if a given model
matches the data in the correct way. To do this, we will
explore the question of models from a philosophical stand-
point, and use those results to come up with a mathematical
definition of a good model.

3 What is a Model?

What is the goal of modeling?

For most people, the goal of making a model is to enable
prediction of points that we don’t have. For instance, in
the real estate model example, the goal is to be able to
determine, as best we can, what the unknown price points
will look like. We already know what the existing points
are. If all we wanted to do was know what different square
footages in different years sold for in the past, we don’t need
a model, we only need a lookup table.

Now, obviously, machines can’t predict the future. We do
not expect our predictions to work if the very basis of what
is happening in our dataset changes. For instance, we would
not expect a model to continue to function if a community
implemented price controls for homes. Therefore, a model
has an inherent presumption that future data will have the
same essential patterns as current data.
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4 Picking Models

There are innumerable ways to pick models. Given any dis-
crete dataset, there are literally infinite models that can be
made to match them. Therefore, given an infinite selection
of choices, how does one decide which model is the best
model for a given set of data?

As an example, Figure 1 shows a set of points. These points
can be given by the following list of data pairs:

(42, 21), (40, 20), (30, 15), (24, 12), (36, 18), (14, 7), (12, 6) (1)

Now, as mentioned, if we want to generate a model for these
points, there are actually an infinite number of models to
choose from. One model (shown in Figure 2) can be given
by the equation

x7 − 198x6 + 16364x5 − 729288x4 + 18855360x3−
281625984x2 + 2241146880x − y7 + 99y6 − 4091y5+

91161y4 − 1178460y3 + 8800812y2 − 35017920y−
7258507200 = 0. (2)

Another model (shown in Figure 3) can be given by the
equation,

y =
x
2
. (3)

Yet another model (shown in Figure 4) can be given by the
equation

x7 − 198x6 + 16364x5 − 729288x4 + 18855360x3−
281625984x2 + 2241146880x − y9 + 100y8 − 4190y7+

95252y6 − 1269621y5 + 9979272y4 − 43818732y3+

92171520y2 − 57153600y − 7315660800 = 0. (4)

Keep in mind that all of these models are perfect fits to
the original dataset, and there are infinitely more models
available to choose from. While it may seem intuitively ob-
vious which of these models should be chosen, more difficult
cases make intuition more problematic. Therefore, we have
to establish specific criteria for choosing models.

The one we intuitively think of as the best fit is (3) (Fig-
ure 3). Notice that this is also the shortest description of
the data.

One consistent theme of the theory of inductive infer-
ence through the ages is that, when deciding between two
equally-explanatory theories, the shortest one is the best.
This has been expressed by Aristotle (“the more limited,
if adequate, is always preferable”), Ptolemy (“we consider
it a good principle to explain the phenomena by the sim-
plest hypothesis possible”), Occam (“plurality must never

Figure 1: Example Set of Data Points

Figure 2: A Basic Curve Model
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Figure 3: A Line Model

Figure 4: A Complex Curve Model

be posited without necessity”), and Newton (“we are to ad-
mit no more causes of natural things than such as are both
true and sufficient to explain their appearances”). This
principle is generally known by the name “Occam’s Razor”
(Borowski, 2012).

The underlying strand in all of these is to never make some-
thing more complicated than necessary. While it may be
difficult to judge between two models that explain different
subsets of data (though we will tackle this question in Sec-
tion 7), if two theories are exactly equivalent in explaining
known data, this principle definitely prefers the one that
is simpler. Keas (2018) provides a detailed account of how
this criteria has worked in the history and philosophy of
science.

Since computer models are encoded in bits, we actually
have an objective way of measuring the size (and, corre-
spondingly, the simplicity) of the model. Therefore, if two
models are equivalent in prediction, the one which can be
encoded in the fewest bits is to be preferred. This abil-
ity to connect model size to Occam’s razor was first identi-
fied by Solomonoff (Solomonoff, 1964a; Solomonoff, 1964b).
Solomonoff induction has been used as the basis for a num-
ber of machine learning induction techniques, including
PAC learning, Occam Learning, and others (a comparison
of the present approach with these is given in Section 12).

5 Finding Generalizations

The methods described in Section 4 allows us to distinguish
between two possible models. However, while it does allow
us to determine if one model is better than another, it does
not give any information about whether or not a model is
a “good” model in an absolute sense.

Look again at Figures 2 and 4. Even if we didn’t have the
model in Figure 3, both of these seem ridiculously over-
complex for the given data. That is, neither of them is
a good model for the given data, even if they are being
compared against each other.

To understand why this is the case, take a look at the data
points given in (1). Now, take a look at (2) and (4). In both
of these cases, the equations are longer than the original
data set.1 However, the equation that seems to be a better
model is (3). In this case, at least from an initial look, the
model is shorter than the data that is modeled.

1While we haven’t specified a specific mechanism for measuring
these size of equations, for these particular equations, pretty much
every means available for measuring their size will be longer than the
original data set.
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We will call a model that is shorter than the data that it is
modeling a generalization. Generalizations are important
because only generalizations represent real learning. This
can be understood just from thinking about the problem
itself. For any given set of data points, the data points could
be treated as a mapping of input to output. Therefore, the
data points themselves act as a model for themselves. Since
Occam’s Razor measures models comparatively, we already
have the data points themselves as a one possible model for
the data. Therefore, any proposed model must be smaller
than the data points themselves.

We will call a model that is smaller than the data points
themselves a generalization.

This is the first iteration of the concept we will construct.
Generalized Information (IG) is the difference between the
size of the data points and the size of the model. Therefore,
in this first formulation, if D is the data and |D | is the size
of the data in bits, and M is the model and |M | is the size
of the model in bits, then

IG = |D | − |M |. (5)

This measures the amount of generalization that a model
provides for its data.2 In this formulation, when IG is pos-
itive, M provides a generalization of D. When IG is zero or
negative, M does not provide a generalization of D.

6 Output Prediction
Dimensionality

The one thing to consider about the model given in the
previous section is that, since it uses data points, it is am-
bivalent as to which direction the prediction occurs in. That
is, given n-dimensional data, one can use the data points
to arrive at results from any n − 1 dimensions given. So,
if our data consisted of homes with the year that it was
built, the square footage, and the price it sold at, we pre-
sumably would want to know the price based on the year it
was built and the square footage. However, there is nothing
preventing us from looking up the square footage based on
the price and the year it was built, or looking up the year
it was built from the price and the square footage.

However, many machine learning models are non-reversible.
That is, if the goal is to determine the final price, and the

2There are some important caveats here, but the goal is to focus
on the philosophical underpinnings rather than technical minutiae. In
any case, for this to be sound, all data should be given in prefix-free
formats, and |D | will also have to include some constant number of
bits to convert D from pure data into a model.

model is trained to look for a final price, the model cannot
be used to take a final price and square footage and solve
for the year. In many machine learning systems, you would
have to build separate models for each direction of the data.

Therefore, for an n-dimensional system, you would need n
models of the training data in order to match the original
success of the data points. This means that we need to
modify (5) in order to account for this. For a simple version,
you can simply divide |D | by the number of dimensions,
which would lead to

IG =
|D |
n
− |M |. (6)

However, more specifically, you can think of the dataset it-
self divided by dimensions, where each dimension has its
own size specification. Therefore, in most machine learn-
ing systems, the model is only able to output a single di-
mension, which we can consider the “output” dimension.
Therefore, we can be even more explicit about the model
size based on this dimension, yielding

IG = |Dout | − |M |. (7)

7 Dealing with Fuzzier Models

Not every model is an exact fit for data. However, not
every model needs to be an exact fit. If the goal is to avoid
modeling noise, then some amount of discrepancy between
model and data needs to be allowed for. The goal, then is
to transform the ideas present in (5) and (7) so that they
continue to apply to noisy data.

Active Information is a simple and straightforward way to
measure the amount of information that a model models
(Dembski and Marks II, 2009). First we will understand
Active Information on its own, original terms, and then we
will apply this to the study of Generalized Information.

7.1 Active Information Basics

Imagine that we are looking for a particular card in a stan-
dard deck—we’ll use the King of Diamonds for this exam-
ple. Active Information says that the endogenous informa-
tion (IΩ) is the probability that we will find the card by
random guessing, expressed in bits.3 The probability for
finding the King of Diamonds in a deck in a single random
guess is 1

52 , which is approximately 5.7 bits.
3If p is the probability, − log2 (p) is the probability expressed in

bits.
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Now, let’s say that someone has outside knowledge of how
this particular card deck is organized. They tell you (cor-
rectly) that the King of Diamonds is one of the first four
cards. Now, we can create a directed search that picks one
of the first four cards at random. This new search proba-
bility, termed exogenous information (IS) is 1

4 , which is 2
bits.

The Active Information (I+) is the amount of information
that my search strategy applies to the problem at hand.
Active information is given simply as

I+ = IΩ − IS (8)

If Active Information is positive, then the search strategy
is helping you, but if Active Information is negative, then
the search strategy is hurting you.

7.2 Bitwise Active Information

Active Information is normally applied to complete
results—that is, the chance of guessing a number correctly,
or guessing a number within a boundary of error, etc.
However, Active Information can also be applied in a bit-
wise manner by simply applying Active Information to the
probability of guessing each bit correctly. Therefore, if we
have a target bitstring of 01001100101, we can measure
the amount of Active Information in a generated bitstring
01001100111. The endogenous information present in the
first bitstring is simply the number of bits—11 bits (i.e.,
− log2

((
1
2

)11
)
). The exogenous information present in the

algorithm that generated the second bitstring can be found
by first looking at the probability. The second bitstring hit
the target 10

11 times. Therefore, the exogenous information

is − log2

((
10
11

)11
)
= 1.5 bits. Therefore, the Active Informa-

tion in the algorithm that generated the second bitstring is
11 − 1.5 = 9.5 bits.

7.3 Applying Active Information to Fuzzy
Models

If we are going to allow for models which have a fuzzy re-
lationship to the actual output, we need a mechanism of
also discounting the allowed model size. Active Informa-
tion can be applied by reducing the measured size of our
output dimension based on the Active Information in the
result.

Active Information can be applied to models in the fol-
lowing way—it is the ability for a model to improve the

guessing on data outcomes. Imagine that the outcomes of
the known dataset were guessed at.4 What is the probabil-
ity of guessing the results at random? This represents IΩ.
Now, imagine that we use model M to improve our guess-
ing. What is the new probability of guessing the result?
This represents IS . Therefore, the amount of data that is
modeled by our model is the Active Information, I+.

When using this for a generalization, we only care about
the size of the actual modeled information, I+. Therefore,
we can use this idea to transform (7) into a more nuanced
equation,

IG = I+ − |M | (9)

We can see that, for the case where we have an exact model,
(7) and (9) are equivalent.5

If our search allows for exact guessing, then there is no
exogenous information in the search. In other words, IS = 0.
Therefore, all that is left is IΩ, which, with only guessing,
is the size in bits of the data. Therefore, IΩ will be the size
of the data itself (at least in the output dimension).

For reversible models of n dimensions, the Active Informa-
tion from each dimension can be summed up for a total
model size, yielding

IG = !
"
∑

x∈n
I+ (x)#$ − |M |. (10)

8 A Simplified Example and
Application

To see how this works, imagine a dataset of 400 entries.
Each data point will be a simple boolean true/false bit,
with the input being simply the index of the bit. For this
dataset, random guessing will achieve a 50% probability
of a correct answer for each bit, yielding an endogenous
information of 400 bits for the whole dataset. Program
Z1 reproduces the 400 bits exactly, and |Z1 | is 260 bits.
Program Z2 reproduces the 400 bits with 99% accuracy,
and |Z2 | is 190 bits. Both of these programs generalize the
data (|Z1 | < 400 and |Z2 | < 400), but which one generalizes
the data better?

4Note that we can use either regular Active Information or bitwise
Active Information for this.

5To see this more explicitly, remember I+ = IΩ − IS . IΩ will be
the size of the result (the output dimension) in bits, which is simply
|Dout |. If the result is exact, then IS = 0. Thus, I+ = |Dout | − 0 =
|Dout |.
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For Z1, IG = 400 − 260 = 140 bits. For Z2, since Z2 is not
an exact match to the data, we need to calculate its Active
Information. IΩ will be the same. Since the model moves
the probability for each bit to 99% accurate, the exogenous
information (IS) is − log2

(
0.99400

)
≈ 5.8 bits. Therefore,

the Active Information (I+) in this model will be

I+ = 400 − 5.8 = 394.2 ≈ 394 bits. (11)

Therefore, since |Z2 | = 190, the Generalized Information
will be

IG = 394 − 190 = 204 bits. (12)

Because the IG of Z2 is greater than the IG of Z1, this means
that Z2 is a better generalization of the data, even though
it is less accurate. Z1 is at risk of slight overfitting, because
the gain in accuracy is more than offset by the increase in
the complexity of the model.

Thus, Generalized Information allows weighing between
generalization and accuracy in models. It provides a philo-
sophically coherent scoring system which weighs together
accuracy and model size to determine which models are
to be preferred over others, and which models should even
count as generalizations at all.

9 Generalized Information and
Knowledge

Let us write IG (M, D) as the amount of generalization a
model M has about dataset D. In this framework, knowl-
edge can be represented as the following limit:

lim
|Dout |→∞

IG (M, D) = ∞ (13)

In other words, if a generalization can be applied to a theo-
retical infinite number of data points, it is knowledge. Note
that this definition of knowledge does not require exactness,
since Generalized Information does not require exactness.
It merely requires that increasing the amount of data with-
out bound also increases the amount of generalization of
the model.

Under this system, classical physics, despite it not being an
exact description of reality, is considered knowledge, be-
cause the same model continues to generalize more and
more points as the dataset gets larger.

Additionally, we can be certain that if knowledge about a
topic can be found, then, with a large enough sample size, it
can be generalized through generalized information. That
is, if we are able to form a model of an item of knowledge,

then it is covered by a fixed size program. If knowledge is
defined to be the continued applicability of a model to an
infinite size of data, and the model is of a fixed size, then
that means that we will have generalized information avail-
able in the limit. Therefore, there is some quantity of data
for which a knowledge-oriented model provides generaliza-
tion.

Interestingly, this also means that, given enough data, the
most size-efficient model is not even necessary. That is, if
the ideal model is Mi , but a poorly implemented model Mp

has the same accuracy but is inefficiently coded (i.e., it is
coded using three times amount of code), given sufficient
data, Mp will also be a generalization.

In short, if knowledge can be had through a model, it will
show generalized information on a sufficiently large dataset.

10 Why Generalization Works

Montañez (2017) points out that all machine learning sys-
tems work only because of the existence of a bias. He
paints compression-based learning systems with skepticism
because, in theory, for any particular arrangement of codes,
the desired ordering of codes may put the longer ones first.

What makes the present model different is that it does not
approach machine learning with the assumption that the
hypothesis space is adequate. Instead, it presents a way of
testing if a given hypothesis can be defensibly considered to
have generalized the training data. For any particular map-
pings of codes to functions, the training data may not be
sufficient to generalize. Thus, the ability to find an appro-
priate hypothesis under Generalized Information may not
be available.

However, in Section 9, we pointed out that, if an appropri-
ate model exists at all, there will be some size of training
data for which the model will provide compression. Since
Montañez focused on finite sets of data,6 this would not be
true for his system.

A way of understand the relationship between Generalized
Information and the results of Montañez is to say that Gen-
eralized Information provides a way of knowing whether or
not your dataset is sufficiently large to provide enough in-
formation to the hypothesis space to be confident that the
hypothesis is doing its job. In other words, Generalized In-

6Section 3.1 of Montañez (2017) says, “We limit ourselves to fi-
nite, discrete search spaces, which entails little loss of generality when
considering search spaces fully representable on physical computer
hardware within a finite time.”
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formation is able to detect whether or not the bias in the
hypothesis space has sufficient mutual information with the
training set in order to have confidence that a given hypoth-
esis likely also shares some amount of mutual information
with the underlying data set. It does not say anything
about whether or not a given hypothesis space is sufficiently
biased in order to do this with a particular size of training
data, or even if the underlying structure to the system can
be modeled with a finite model in the hypothesis space.

Generalized Information does not say that a model that
does not exhibit generalized information is incorrect.
Rather, it says that there is not sufficient data to know,
based on the data itself, that it is true. For instance, if
we are given only a single data point, since it is presum-
ably based on some real phenomena, there is some model
about that data point that is true. If a good model is se-
lected, then that model will continue to be true for future
data points. However, it is impossible to tell from that sin-
gle point whether or not the model matches the data suffi-
ciently. A given modeller may know from other information
they know about the problem whether or not the model is
correct, but not from the data itself. Generalized Informa-
tion tells you the cutoff point for when you can know, based
on the data itself, when generalization is occurring.

11 Benefits of Generalized
Information

Generalized Information offers several benefits over other
inferential models. As noted in Section 4, Generalized In-
formation is not the first inferential system to utilize Oc-
cam’s Razor as a foundation stone. However, Generalized
Information offers several benefits, including:

• It provides a minimum threshold for establishing
whether a model is a valid generalization of the dataset.

• The techniques are grounded philosophically—each
step is the result of philosophical analysis of the goals
we are trying to achieve.

• The techniques are straightforward—only the most ba-
sic information theory mathematics are required to
perform them.

• The techniques are adaptable—it is not dependent on
any particular type of model being used.

• Generalized Information allows use of more data—
generalizations can be made using the entire dataset.7

7In typical machine learning techniques, some of the data has to be

Additionally, while a thoroughly rigorous application of
these ideas in software may require a good amount of
programming effort,8 a “good enough” approach is fairly
straightforward to implement. The amount of Active Infor-
mation can be determined statistically, and the data size
and model size can both be evaluated simply by checking
storage size inside the program itself.

12 Comparison with Other
Machine Learning Systems

The first thing to note about Generalized Information is
that it is not necessarily in competition with other machine
learning systems. In fact, Generalized Information does not
specify either (a) the nature of training algorithm, or even
(b) the nature of the model being used. Generalized In-
formation, as such, is fully compatible with any training
algorithm or any model. Generalized Information is only a
test of the outcomes of a machine learning system. For in-
stance, for a Decision Tree, Generalized Information would
take into account the number and size of nodes (i.e., the
model size) and compare it to its accuracy on the training
data. However, some machine learning systems do provide
opportunities for comparison.

For instance, take the k-Nearest-Neighbor (kNN) algo-
rithm. For this algorithm, the model is the training data.
Therefore, according to Generalized Information, a naive
implementation of kNN cannot exhibit Generalized Infor-
mation. However, kNN could be tweaked to do so. For
instance, one could establish a subset of training data that
performs sufficiently well in order to be considered a gen-
eralization.

Many statistical tests have been established to compare two
alternative models, and decide which one is more likely to
be the true model, even based on model size. The Vuong
closeness test, for instance, compares two models, taking
into account the number of parameters in each model.
Many other similar criteria are available, including the
Akaike information criterion, the Bayesian information cri-
terion, and others (Sayyareh, Obeidi, and Bar-Hen, 2011).
In the Machine Learning field, the principle of Solomonoff
induction inspired several systems including PAC-learning
(Valiant, 1984) and Minimum Description Length (Grün-

held back in order to test the model on the data. Since this technique
focuses on generalization rather than prediction, all of the data can
be used.

8Here, I am considering such problems as converting all data val-
ues to prefix-free formats, identifying a fixed language for a model,
establishing the program size for converting a dataset into a model to
determine |D |, etc.
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wald, 2005). These have very similar characteristics to
the statistical criteria listed above, in that they base their
model selection on some combination of model size and ac-
curacy.

There are three primary advantages to Generalized Infor-
mation against all of these other criteria.

1. These criteria only work for parameterized models,
while Generalized Information can operate with any
type of model, as long as it can be evaluated for a size
(which means any computer-implementable model).

2. These criteria are only relative comparisons. That is,
they compare models against each other, not against
some absolute standard. Generalized Information es-
tablishes a minimum criteria which must be achieved—
the size of the training data itself. Additionally, using
Active Information, this size can be adjusted based on
the degree of accuracy which is attained.

3. Generalized Information is a much more straightfor-
ward test. It is understandable by nearly anyone with
the slightest background in information theory or com-
puter programming, while the other tests require much
more advanced knowledge of statistics. Additionally,
knowing why Generalized Information works can be
done without hardly any mathematics, as this present
paper demonstrates.

Interestingly, since Generalized Information is model-
agnostic, all of these criteria could be extended with at least
part of Generalized Information by constraining models to
a maximum model size based on the size of the training
data available and the accuracy of the model.

13 Potential Problems

Several potential problems exist with this framework. The
first and most obvious one is whether or not limiting the
size of the model to the size of the output dimension as
discussed in Section 6 is the correct procedure. While it
appears to be correct from a variety of angles (i.e., recon-
structing all output dimensions allows use of the entirety
of the training data size), it does seem that the allowable
model size should include some amount of size from the
input dimensions, since, after all, it will be using those di-
mensions in calculating the output dimension.

Another one is calculating accuracy. That is, with a naive
approach, all failures are equivalently failing. This is not

an essential problem with the model, as it is based on the
output encoding. A simple naive output encoding could
be squished into a binary output, but this prevents one
from knowing “how far” off the algorithm is. An alternative
output encoding could put more weight on more significant
figures, and less weight on less significant figures, such that
results that are “near” can match more bits than those that
are “far.”

Additionally, this model needs to be subject to empirical
verification. Currently, it exists only as an idea, and needs
to be applied to specific problems to demonstrate that it can
indeed prevent overfitting and demonstrate generalizations
as claimed.

14 Future Applications of
Generalized Information

Generalized Information can be used anytime someone
wants to judge between actual fits between model and data
and post-hoc curve fitting. The primary target considered
here is for machine learning models, however, it can be ap-
plied to a number of similar situations.

For instance, this technique could be used as a replace-
ment for p-values in statistical inference. p-values do not
take into consideration the model size used to establish the
inference. Thus, Generalized Information can prevent the
problem of p-value hacking in many statistical applications.
That is, imagine that someone pulls in a huge number of
datasets in order to hack a false statistical correlation. With
Generalized Information, there would need to be sufficient
information within the model to choose which statistics are
to be used for correlation, thus depressing the p-value of the
result. Statistically, p < 0.05 should be roughly equivalent
to IG > 4.322.

Finally, work needs to be done on establishing a baseline
language for this type of modeling. In the limit (see Sec-
tion 9) it doesn’t matter what language is used for the
model, as long as the language selection is independent
from problem selection. However, for practical purposes, it
would be helpful to have a unified, efficient language that
could be used for general comparisons.
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